Business Strategies for Stationary Fuel Cell Applications

Mira Vowles, BPA Fuel Cell Program Manager

Fourth Annual SECA Meeting

Bell Harbor International Conference Center Seattle, Washington

Stationary Fuel Cells

- BPA's EnergyWeb
- Overview of stationary fuel cell markets and regulations
- Business strategies
- BPA's Fuel Cell Program

What is BPA?

 BPA is a federal power marketing agency, serving the pacific northwest.

Why a BPA Fuel Cell Program?

- required to lower costs via R&D by the 1980 Power Act
- Clean, simple concept, efficient, quiet, supports green power
- Offset building new transmission lines
- EnergyWeb

EnergyWeb

EnergyWeb definition:

The integration of the utility electrical system, the telecommunications system, and the energy market

- 1) to optimize loads,
- 2) reduce costs,
- 3) facilitate the integration of renewable resources,
- 4) increase electrical system reliability and
- 5) reduce environmental impacts of load growth.

EnergyWeb

What is FERC's Standard Market Design?

- A uniform set of rules for the operation of the transmission grid and the wholesale electric markets nationwide.
- Intended to ensure all energy generators have equal access to the grid and equal economic compensation for their participation in wholesale electric markets.

Regional Transmission Operator Goal

 To create a robust, <u>voluntary</u>, demand-side market for ancillary services, including distributed generation.

RTO Potential Ancillary Services

- Regulation and Frequency Response service;
- Load Following Up service
- Load Following Down service
- Spinning Reserve service
- Non-spinning Reserve service

- Balancing Energy
- Voltage Support
- Black Start service
- Congestion Re-dispatch service and
- Local Generation Resource ("LGR") which include fuel cells!

The Grid

- Low Cost
- Convenience
- Status Quo
- Predictability

Distributed Generation

- Self-sufficiency
- Flexibility
- Cogeneration
- Reliability (?)

Hey, we're reliable!

Hey, whe're new!

What can fuel cells

do for the Grid?

Reduce loads on constrained transmission paths

Reduce daily and seasonal peak loads

The Demand Exchange

BPA's Peak Load Management Program for selling energy back to the grid.

Brad Miller, Program Manager (503) 230-3764

Demand (MW)

Policy Drivers

- Energy Security
 - Supply
 - Delivery
- Environmental Quality
- Global Climate Change
- Consumer Protection and Choice
- Economic Development
- Science & Technology Leadership

- Fuel Cells
- Renewables
- Advanced turbines
- Hybrids
- Combined Heat & Power
- Demand Response
- Peak Shaving
- Grid Support

Possible fuel cell adoption curve

Business Strategies

What Business Model will be the most effective?

- Lease or sell?
- Will 3rd party vendors package into "plug-and-play" systems?
- IBM or Gateway?
- Will partnerships be formed with fuel providers?

Business Opportunities

- Fuel cell manufacturers
- Energy service companies (ESCO's)
- Utilities
- Electrical installation/service companies
- Retail companies

Aggregating Business Segments

- Electric Utility Service Areas
- Climate
- Customer Size and Type

Strategic Business Issues

- Who will reduce costs first?
- How will codes and standards affect your product?
- When will size and designs be standardized?
- What will be the preferred fuel?
- Will incentives continue to be available?
- Will manufacturers be responsible for their product from cradle to grave?

Customer Service Issues

- Owners want all-inclusive warranties, 24/7 customer service and in-depth training
- Modular design
- "User" Groups with Web-enabled data for comparison
- Communication protocol for remote troubleshooting and grid connection

Consortium for Electric Infrastructure for a Digital Society (CEIDS)

Goals:

- Develop, validate and test communication models for grid connection, real time scheduling and remote dispatching of DG
- Coordinate with others for industry standardization

What could the DG Data Object include?

- On / off status
- Automatic or Manual mode
- Operational or off-line
- Ready to be connected to load
- Connected or disconnected from load
- Base load or load following
- Connected to grid or stand-alone
- Ready to be synchronized to grid, or not
- Status: starting, generating or shutting down
- Alarms: high/low voltage, high/low frequency, emergency trip, etc

Flowchart of CEIDS Process

Who are the CEIDS Stakeholders?

BPA's Fuel Cell Program

BPA's Fuel Cell Program

- Goal: To accelerate the commercial availability of fuel cell technology.
- Objectives: To identify and address barriers to fuel cell technologies and to ensure commercial systems meet the needs of our Customers through field testing precommercial systems.

BPA Program Accomplishments

- Field tested 16 PEM fuel cell systems,
- Active Steering Committee,
- Participate in USFCC Codes and Standards Committee,
- Co-sponsor DG Code Workshops,
- Part of NW Combined Heat and Power Consortium and
- Participating in fuel cell education and outreach activities.

Plug Power's GenSys 5CS Unit

- PEM
- 5 kW
- Natural gas
- Grid connected
- Heat recovery capability
- Listed only for exterior installation

Global Thermoelectric/Quantum Beta Units

- Planar solid oxide
- 2 kW and 5 kW units
- Natural gas or propane fuels
- Grid connected
- Future heat recovery capability

Characteristics for niche applications

- Start-up time
- Operating temperature
- Operating environment
- Effects of cycling
- Fuel flexibility
- Heat recovery capability
- Efficiency
- Repair/replacement times and costs
- Effective life

Stationary Fuel Cell Code Restrictions

- Several Cities don't allow aboveground tanks
- Even prototype units need to be 'listed'
 - field labeling is expensive and time consuming

BPA's Program Future

- Continue gathering field data;
- Balance BPA's current financial constraints and the state of the technology;
- Field test a variety of systems using different fuels.